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Abstract
An experimental and theoretical study of very-low-energy electron diffraction from the (0001)
surface of 1T TiS2 is presented. The normal incidence electron transmission spectrum is
measured up to 37 eV above the Fermi level. Ab initio calculations of the spectra are performed
with the full-potential extended linear augmented plane wave k · p method. The experimental
spectrum is interpreted in terms of the unoccupied complex band structure (CBS) of the
semi-infinite crystal. Three CBS branches responsible for the electron transmission at normal
incidence are determined. The role of inelastic scattering is discussed. The energy dependence
of the optical potential Vi is determined from the shape of the experimental spectral structures.
A sharp increase of Vi at 21.5 eV is detected, which is associated with a plasmon peak in the
electron energy-loss function.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The rapid development of surface microscopy techniques, such
as low-energy electron microscopy or scanning tunnelling
microscopy, has revived interest in the physics of electron
scattering by surfaces, especially at kinetic energies of a few
electron volts. This regime is characterized by a reduced
inelastic scattering of electrons, which makes the connection
between the observed electron transmission spectra and the
underlying electronic structure more transparent, and at the
same time requires a very accurate treatment of the multiple
scattering of incident electrons.

For periodic solids, the band structure theory is an
attractive approach because it combines the computational
accuracy of modern band structure methods with a convenient
language for the interpretation of results, namely, the language
of Bloch states. The scattering state� arising from an electron
incident from vacuum is represented in the bulk of the crystal
by a linear combination of partial waves. These waves are
propagating and evanescent Bloch eigenfunctions ψk⊥ of the
crystal Hamiltonian comprising the complex band structure

of the semi-infinite crystal [1]. Then the scattering problem
consists in finding the coefficients of the partial waves. The
Bloch wave approach to LEED was developed in the early
years of LEED theory within a plane wave pseudopotential
technique [2]. It was extended to all-electron potentials
(i.e. the potentials with a Z/r singularity at the nucleus)
in [3–5]. An alternative approach is exemplified by the
layer KKR method [6], in which the crystal is represented
by a finite number of atomic monolayers, and the multiple
scattering is calculated by the Green function method. It is
considered a computational advantage of this method that it
avoids calculating the partial waves and proceeds immediately
to the solution� that we seek [7]. However, as a consequence,
the relation to the underlying band structure is blurred.
Understanding the role of different Bloch states in transmitting
the current into the crystal is especially important in view of
the unavoidable shortcomings of the state-of-the-art ab initio
theories: owing to the fundamental approximations involved
in the construction of the quasiparticle Hamiltonian, we can
never expect a pointwise agreement between theoretical and
experimental LEED spectra. Moreover, it is our aim to infer
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from the comparison with the experiment what the actual
quasiparticle band structure looks like.

Apart from the explanation of electron transmission
through the surface, the knowledge of unoccupied states
is necessary in order to study occupied band structure by
angle-resolved photoemission. A connection to VLEED is
established by the one-step theory of photoemission (see, for
example, [8]), in which the photoelectron final state is exactly
the time-reversed LEED state. To unambiguously extract
information about occupied states one needs to know both the
dispersion of the final state waves in k⊥ (the Bloch vector
in the surface perpendicular direction) and their momentum
broadening (expressed by an imaginary part of k⊥). The latter
determines the intrinsic k⊥ resolution of the photoemission
experiment and leads to a broadening of photoelectron
spectra from the k⊥-dispersive occupied states [9]. The
momentum broadening is immediately connected with the
inelastic scattering rate in the final state, which in the present
context is quantified by the optical potential Vi, an imaginary
part of the potential in the crystal. The finite photoelectron
escape depth is seen as the real-space counterpart of Im k⊥,
which within the one-step theory is equivalent to the mean free
path of the incident electron in LEED [10].

We have performed a number of combined experimental
and theoretical studies of the unoccupied band structure of
layered dichalcogenides NbSe2 [11] and TiTe2 [12], and
graphite [10]. Owing to the scattering by the interlayer
potential barrier, the unoccupied energy bands of layered
materials are very complicated and the target current
spectra T (E)—transmitted current versus energy—exhibit rich
structure. Based on the convincing agreement between theory
and experiment we were able to extract information on the
lifetimes of the final state quasiparticles from the measured
broadening of the VLEED spectral structures.

In the present paper we study the unoccupied band
structure of TiS2. Similar to a number of transition metal
dichalcogenides it crystallizes in the CdI2 structure [13], which
is made of hexagonal S–Ti–S sandwich layers bound by a
weak van der Waals interaction. Its intercalation properties
make titanium disulfide an important material for cathodes
in rechargeable batteries. Over the last two decades the
electronic structure of TiS2 has been intensively studied
both experimentally [14–16] and theoretically [17–22]. The
occupied band structure of TiS2 is rather well understood. At
the same time, in spite of the large number of experimental
works on photoemission from TiS2, there has been only
a single attempt [14] to calculate the high energy bands
of TiS2. However, the evanescent part of the complex
band structure was not taken into account in that work,
which caused an uncertainty in the interpretation of the
measurements. The aim of the present work is to provide a
band structure interpretation of the observed normal incidence
electron transmission spectrum of TiS2.

The paper is organized as follows. The experimental
technique is described in section 2 and the theoretical
methodology in section 3. In section 4, we present the
experimental electron transmission spectrum of TiS2 and
compare it to our ab initio calculations.

electron gun

sample

current
amplifier

R(E)

Vc

analyser

focusing
voltages

I(E)

Figure 1. Scheme of the VLEED spectrometer operating in the
retarding field mode.

2. Experiment

The experiment was performed with the VLEED spectrometer
installed in Chalmers University of Technology, Göteborg,
Sweden. Its scheme is shown in figure 1. The spectrometer
uses a standard four-grid LEED optics operated in the retarding
field mode. In contrast to the standard field-free operation
of LEED optics, in this mode the drift tube of the electron
gun and the outer grid are disconnected from the ground. A
floating power supply delivers to all electrodes of the gun the
voltages relative to the cathode as required to extract a well
focused electron beam, with the voltage at the last electrode
and outer grid connected to it being around +300 V. This
forms a retarding field between the gun and the sample kept
at the ground potential. Starting from a negative cathode
potential Vc, the electrons accelerate in the electron gun and
then decelerate on their way to the sample towards their low
primary kinetic energy E = eVc determined by the cathode
potential. In this operation mode very low primary energies can
be achieved without any significant degradation in focusing of
the electron beam. Moreover, the fact that the electrons travel
most of their way to the sample at relatively high energies
suppresses the influence of stray magnetic fields. It should
be noted that a prerequisite for a well controlled VLEED
experiment in the retarding field mode is that the electrostatic
masses, such as the manipulator and sample holder, preserve a
smooth and symmetric configuration of the electrostatic field.
Further details of the experimental technique, including angle-
dependent measurements where the retarding field distorts the
electron trajectories upon the sample rotation, are described
elsewhere [23, 11].

At normal incidence the standard I (V ) measurements,
when one registers intensities of the diffracted beams on the
LEED screen, have a principal limitation that the specular
beam falls into the electron gun area and thus escapes
detection. Instead, we registered the current in the sample
circuit, the technique commonly referred to as target (total,
absorbed) current spectroscopy (TCS). This technique is based
on the fact that the target current spectrum I (E) is equal to
the incident current I0 minus the total elastic reflectivity R(E)
summed over all diffracted beams, and inelastic reflectivity
Rinel(E). (At sufficiently low energies there is only one
reflected beam.)
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The incident current I0 is constant, because due to the
retarding field operation the focusing voltages on the electrodes
of the electron gun are energy independent. The Rinel(E)
contribution yields only a rather featureless background.
Therefore, the I (E) spectrum represents essentially the elastic
electron transmission spectrum T (E) = 1 − R(E). In the
following, despite the use of the TCS measurement technique,
we will refer to the T (E) spectra as VLEED ones in the
sense of the dominant physical mechanism forming the spectral
structures.

Atomically clean (0001) surfaces of TiS2 crystals were
obtained by standard in situ cleavage at a base pressure of
10−9 mbar. Observation of LEED patterns with the electron
beam scanning across the sample surface showed the presence
of minor misoriented crystallites closer to the sample edges,
which is typical of layered materials. To ensure clean spectra
without contamination from these crystallites, we monitored
the LEED patterns during the data acquisition. A beam current
about 0.1 μA was sufficient to obtain excellent statistics of the
spectra within less than 1 min. Operation at such a low current
improved focusing of the beam (the spot size on the sample
was <0.5 mm through the whole energy range) as well as
allowing operation at reduced cathode temperatures to improve
the experimental energy resolution determined by the energy
spread of the beam (<0.25 eV HWHM).

3. Theory and computational methodology

The LEED wavefunction � is the solution of the Schrödinger
equation for a semi-infinite crystal defined by its energy E
and the initial conditions of the incident electron, i.e. the
asymptotics of the wavefunction in the vacuum. In the plane
parallel to the crystal surface � obeys the Bloch theorem
and is characterized by the 2D Bloch vector k‖. In the
vacuum, far from the crystal surface, it is a superposition of
plane waves: the plane wave propagating towards the crystal
defines incident current, and the total current carried by the
LEED state is the transmitted current. The ratio of the two
currents is the transmission coefficient T (E). In the absence
of inelastic scattering (electron absorption) the crystal half-
space is described by a real crystal potential, and the partial
waves may be propagating (real k⊥) or evanescent (complex
k⊥) Bloch waves. The latter carry zero current, so that T (E)
drops to zero when E falls in a k‖-projected band-gap.

In reality, however, owing to inelastic processes, T (E)
is always nonzero. Following Slater [24] we take this into
account by adding an imaginary term, the optical potential
−iVi, to the potential in the crystal half-space. We keep the
energy E real, so the absorbing potential leads to a spatial
damping of the wavefunctions rather than to a decay in time.
Then the Bloch vector of an originally propagating wave with
a group velocity v⊥ acquires an imaginary part of the order of
Vi/h̄v⊥, and the mean free path (MFP) of the electron in the
solid is then λ = 1/(2 Im k⊥). At the same time, in the energy
gaps of the propagating spectrum the transmission T (E) is not
zero anymore (it should be interpreted as absorption), and the
sharp drops and rises of the T (E) function become smooth.
The curvature of structures in the T (E) curve can be controlled

by the parameter Vi. By adjusting the shape of the theoretical
T (E) curve to the experiment one can construct the energy
dependence of Vi and, thus, infer about the intensity of inelastic
scattering depending on energy.

The phenomenological parameter Vi is associated with
the expectation value of the imaginary part of the self-energy
operator �(r, r′; E) [25]. It may have a complicated real-
space structure, which means that different partial waves of
the LEED function should, in principle, be ascribed different
values of Vi. The approximation of a spatially constant self-
energy may be rather unsatisfactory if the LEED state is
composed of several Bloch waves, as has been evidenced
in recent studies on photoemission from TiTe2 [26] and
aluminium [27]. However, at high energies the � operator
cannot be reliably calculated by the state-of-the-art methods,
and the empirical determination of Vi is the only way to
quantify inelastic scattering.

In section 4 we shall discuss calculations with Vi �= 0.
There, depending on the context, we shall use the term real
band structure (RBS) both for the band structure of an infinite
crystal and for the fragments of the complex band structure that
originate from propagating Bloch waves at Vi = 0. The Bloch
waves in the gaps of RBS, which have nonzero Im k⊥ at Vi = 0,
are referred to as genuinely evanescent waves.

3.1. Computational procedure and parameters

Computational procedure starts with constructing self-
consistent potentials in the bulk crystal and at the surface.
The local density approximation (LDA) of the density
functional theory is used. The band structure calculations
are performed with the extended linear augmented plane
wave method (ELAPW), using the full-potential augmented
Fourier components technique described in [28]. Typical
computational parameters for layered chalcogenides can be
found elsewhere [11, 28]. To determine the potential at the
surface a repeated slab calculation was performed. The slab
consists of three TiS2 sandwiches separated by a vacuum
region of 16 au; see figure 2. The calculated work function is
φ = 6.7 eV, which somewhat overestimates the experimental
value of 5.8 eV. This discrepancy is most probably due to the
LDA, the accuracy of which we cannot control.

Then for a given energy E the inverse band structure
problem is solved, i.e., the partial Bloch waves ψk⊥ are
determined that satisfy the Schrödinger equation Ĥψk⊥ =
Eψk⊥ in the bulk of the crystal. Owing to the complex potential
−iVi included in the Hamiltonian Ĥ , all the waves have a finite
imaginary part of the surface perpendicular component k⊥ of
the Bloch vector. The calculations are performed with the
ELAPW-k·p method, which reduces the inverse band structure
problem to a matrix eigenvalue problem, with k⊥ being the
eigenvalues; see [3]. To the left from the matching plane zM the
LEED function � is a linear combination of several ψk⊥ (only
the waves with Im k⊥ not exceeding 1 au−1 are included).

Between zM and zV the potential strongly deviates from
the periodic potential in the bulk, and it depends on all three
coordinates. In the present calculation the embedded region
does not include any atomic layers, because for the layered
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Figure 2. Crystal potential profile V (z) at the surface. For z < zM, it
coincides with the potential of the infinite crystal. In the vacuum
region, z > zV, the potential is constant. The full potential is shown
by the solid line and the muffin-tin potential by the dashed line. The
lower panel shows three structure units of three surface layers.

structure the potential at the uppermost monolayer is already
practically the same as in the bulk. In this region the function
� is expanded in terms of the eigenfunctions ξn of the three-
sandwich slab; see [5]. The same set of ξ functions is used
for all energies E . In order to accurately describe the energy
region up to 40 eV above the Fermi level we included 225 ξ
functions with energies up to 55 eV above EF.

Finally, in the vacuum, � is a superposition of plane
waves, of which one is the incident wave and the others are
reflected or evanescent waves. They play the same role as
the functions ψk⊥ in the bulk. Then, for each energy E the
three representations are matched at the two planes zM and zV,
and a function is constructed that is smoothly continuous at the
two planes and satisfies (with a certain accuracy) the equation
Ĥ� = E� in the embedded region. (The Schrödinger
equation is satisfied by construction both in the bulk and in
the vacuum region.)

3.2. Influence of the exact shape of the potential in the bulk
and at the surface

The present method employs the most accurate representation
of the wavefunction—augmented plane waves—and provides
the same quality of the scattering states as in state-of-the-art
band structure calculations. In order to understand whether
the achieved accuracy is worth the numerical effort we shall
consider two sources of technical difficulties, which in the
present method are treated differently than in the KKR method,
namely the non-muffin-tin potential in the bulk and the shape
of the surface potential barrier.

Although full-potential KKR methods have existed for
many years [29] the muffin-tin approximation (MTA) to the
crystal potential is still widely used in the theory of LEED [30].
The reason is that the KKR method is especially efficient
for muffin-tin potentials. It is instructive to see how the
effect of the approximation depends on the kinetic energy.
Figure 3 compares the T (E) curve obtained with the full

20 40 60 80

0.5

1

Figure 3. Normal incidence transmission spectra T (E) for
Vi = 0.5 eV calculated with the full potential (solid line) and with
the muffin-tin potential (dashed line).

Figure 4. Transmission spectra T (E) calculated with the
self-consistent full potential in the bulk for three values of work
function, φ = 6.7, 7.0 and 7.3 eV (solid, dashed and dot–dashed
curves, respectively). The optical potential is Vi = 0.6 eV. The
spectra in the left graph are obtained with the smooth ab initio
potential at the surface, and in the right graph with a step-like
potential. The solid vertical line at 8.1 eV shows the location of the
experimental maximum and the dashed line at 9.4 eV of the
experimental minimum.

potential with the one calculated within the MTA. The latter
is explicitly derived from the former by spherically averaging
the potential inside the MT spheres and averaging the potential
in the interstitial; see the dashed curve in figure 2. Both
calculations employ a step-like surface barrier. The basis set
(and, consequently, the numerical accuracy) is the same in both
cases, so the difference between the two curves in figure 3 is
solely due to the shape of the potential. In spite of the layered
(far from close-packed) structure of TiS2 the MTA turns out to
be reasonable at higher kinetic energies. However, its quality
rapidly deteriorates below 20 eV.

In the present calculation the surface region, which cannot
be included either in the bulk or in the vacuum half-space, is
relatively thin, zV − zM = 5 au; see figure 2. Nevertheless,
it requires special treatment, which considerably complicates
the computational scheme [5]. Because the embedded region
does not contain any singularities (there are no adsorbates
or intercalated atoms) it is tempting to replace the smoothly
growing potential with a sharp step at zM. Figure 4 shows that
this substantially affects both the shape and absolute values
of the electron transmission spectrum over an energy region
of several electron volts. Just above the barrier, the step-like
potential, as expected, more efficiently reflects electrons: at the
maximum, where the transmission is due to the RBS fragment
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Figure 5. Left: comparison of the experimental (dots) and theoretical (line) normal incidence transmission spectra of TiS2. Locations of the
structures in the theoretical curve are indicated by the vertical bars. Right: energy dependence of the optical potential Vi(E) used in the
calculation (lowermost panel), the resulting band structure E(Re k⊥) (middle panel) and the mean free path λ = (2 Im k⊥)−1 (upper panel) for
the three most important CBS branches. The vertical extent of the shaded area shows relative contributions of the branches to the LEED state.

of the branch α (see figure 6), the transmission with the smooth
potential is higher than with the abrupt one. At the same time,
with the realistic smooth potential, the minimum due to the
gap in the real band structure is deeper than with the step-like
one, and the transmission above the gap (branch β) is lower.
The energy shift of the extrema is about 0.5 eV, which is larger
than the possible uncertainty of the measurements or of the
numerical procedure. Another interesting observation is that
with the smooth potential the T (E) curve is more stable to the
variations of the work function than with the step-like potential.

4. Results and discussion

The calculated T (E) spectrum is compared with the measured
one in figure 5. The experiment does not provide absolute
values of T (E), first because the incident current is difficult to
measure, and second because of the unknown background of
secondary electrons. Thus, in order to compare the measured
I (E) curve with theory the former should be transformed
(assuming a constant background b) according to the formula
Texp(E) = a I (E)+ b. The parameters a and b are determined
so as to fit Texp to the theoretical T (E). Because the amplitude
of the variations of the calculated T (E) depends on the
unknown value of Vi the functions Vi(E) and Texp(E) are
determined self-consistently by an iterative procedure [11].

A rather good agreement between the theory and the
experiment has been achieved with the Vi(E) function shown
in the right graph of figure 5. It is an arctan curve with
the inflection point at 21.5 eV. The value of 21.5 eV was
chosen because this is the plasmon energy of TiS2 [31]. Above
this energy the inelastic scattering is expected to become
stronger because the electrons can lose enough energy to create
plasmons [11]. The measured T (E) variations being much
sharper below 21 eV than above this energy is reproduced
by a steep increase of Vi by about 0.9 eV. A similar sharp
increase of Vi that closely correlates with the plasmon energy

has been observed in NbSe2 [11]. We did not observe a step-
like behaviour of Vi(E) in TiTe2 [12], perhaps because of the
unfavourable location of its plasmon energy relative to the
T (E) structures. Another reason for the different behaviour
of these similar crystals may be the spatial structure of the self-
energy operator mentioned in section 3.

The complex band structure underlying the theoretical
T (E) curve is shown in the right panels of figure 5.
Three branches are found to strongly contribute to current
transmission through the surface. The dispersion of the bands
E(Re k⊥) is seen to be far from the free-electron parabola
often assumed in interpreting photoelectron spectra. Also the
behaviour of the mean free path is very different from the
universal U-shaped curve often cited in the literature [32].

In order to interpret the origin of the structures in the
T (E) curve we present in figure 6 a detailed band structure
analysis of the normal incidence target current. In the lower
panel we show a T (E) spectrum for Vi = 0.25 eV. With
this unphysically small value the structures are seen more
clearly, and the connection of the conducting complex band
structure to the real band structure of the infinite crystal is more
transparent. The latter is shown in the central panel by the
thin lines. The lines of variable thickness depict the three most
important conducting branches of the CBS. The thickness of
the line is proportional to the current carried (absorbed) by the
individual partial wave.

Because in the absorbing medium the current is not
conserved, the analogue of current is the integral of the
density distribution in the LEED state over the absorbing half-
space [33, 10]:

Tbulk = 2Vi

h̄

∫
bulk

|�(r)|2 dr. (1)

If � is an exact solution of the Schrödinger equation then Tbulk

equals the current in the right half-space, where Vi = 0 and
current is conserved. The partial currents Tk⊥ are calculated
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Figure 6. Band structure analysis of the normal incidence electron transmission in TiS2. Lowest panel: transmission spectra T (E) for
Vi = 0.25 eV. Middle panel: real band structure in the A
A interval (thin lines) superimposed on the complex band structure for
Vi = 0.25 eV. The three real lines of the CBS that most strongly contribute to the transmitted current are shown. They are labelled by α, β and
γ . The thickness of the line is proportional to the current carried by the individual partial wave. The imaginary part of the complex
wavevectors can be inferred from the upper panel. Upper panel: dependence of the mean free path λ on energy for the conducting CBS
branches. The thickness of the line is proportional to the current carried by the wave.

by equation (1) for each ψk⊥ that constitutes �. In the limit
Vi → 0 the expression (1) reduces to the usual expression for a
current in an elastic (nonabsorbing) medium, and the functions
ψk⊥ obey the orthogonality condition: current carried by a
superposition of Bloch eigenfunctions of the same energy is the
sum of the individual currents. This is not the case for Vi �= 0,
which should be kept in mind when considering figure 6.

The simplest interpretation of minima and maxima in
the T (E) curve which can be arrived at without an explicit
calculation of the LEED function is the following: the
minimum occurs in a gap of the real band structure, which
is spanned by a CBS line connecting two bands through the
complex k⊥ plane, the CBS line being responsible for the
absorption of the current when Vi �= 0. The maximum
corresponds to an RBS line, and it occurs close to the point
where the group velocity and, consequently, the mean free path
is maximal.

In the upper panel of figure 6 the energy dependence of
the mean free path λ = (2 Im k⊥)−1 is shown for the three
branches that substantially contribute to the LEED state. They
are denoted by α, β and γ . The maxima A, C, D, F and K are
in perfect accord with the above interpretation. In contrast, the
maxima H and I occur in the same RBS fragment belonging
to branch γ , the peak H being to the left and I to the right
from the MFP maximum. At larger values of Vi the two peaks
merge into one broad maximum, so the double structure is not
resolved experimentally.

The structure of the minimum B at 10 eV also does not
completely fit into the above simple scheme. Its shape is

affected by a narrow conducting RBS fragment of branch β ,
which falls at 11 eV into the 3 eV wide RBS gap of branch
α. The minimum E at 16.5 eV is even more complicated: just
at this energy the current carrying branch switches from α to
γ , and around the minimum the current is absorbed by branch
β . The structure of branch β is rather unusual: it spans a very
wide gap between 11.5 and 20.5 eV. It is interesting that at
17 eV, apart from the evanescent wave belonging to β , there
exist two RBS members from α and γ with much larger values
of MFP. Nevertheless, their contribution to � is much smaller
than that of the rapidly decaying β wave. The minimum at
30.5 eV is another example when the transmission is due to
a genuinely evanescent wave with a short MFP (branch γ ),
although a slowly decaying wave (from the RBS fragment of α)
is available. At the maximum L all three waves are propagating
at Vi = 0, but the main contribution is from γ , which has the
shortest MFP.

The above analysis shows that the transmission role of
bulk partial waves cannot in general be inferred from their
integral properties, such as group velocity or decay rate.
At the same time, in spite of the complicated unoccupied
band structure of TiS2, only three branches determine the
transmission over a wide energy range.

5. Conclusions

We have measured the normal incidence VLEED spectrum
of the (0001) surface of 1T TiS2 in the target current mode
and explained it by an ab initio calculation. We have shown
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how the structures of the transmission spectrum can be traced
back to the complex band structure of the semi-infinite crystal.
Based on a very good agreement between experiment and
theory in the energy location of the TCS structures over the
whole interval, we explain the observed shape of the spectra
by the energy dependence of the optical potential.

The most interesting feature of the normal incidence
transmission of TiS2 is the broad minimum at 17 eV where
the main current carrying wave switches from one branch to
another. (We have not encountered such behaviour in our
previous studies on layered crystals [11, 12, 10].) Our results
suggest that this energy region might be especially interesting
for photoemission measurements because the photoelectron
escape depth (which is the mean free path of the LEED theory)
changes very rapidly with the final state energy and reaches
extremely small values at the minimum.

The present study further reinforces the idea that complex
band structure is an efficient paradigm for interpreting electron
diffraction. Being the most direct probe of unoccupied
electron states, VLEED proves an indispensable complement
to photoelectron spectroscopy. The presented theoretical
description, which emphasizes the connection of VLEED with
unoccupied band structure, can be equally applied to secondary
electron emission (SEE) because, as shown theoretically [34]
and experimentally [35], the SEE spectra are equivalent to
the VLEED transmission spectra on top of a featureless
background due to cascade electrons.
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